Projecting Births in Iran Using a Three-Parameter Model

Meimanat Hosseini and Peter McDonald
Demography Unit
Melbourne School of Population and Global Health
University of Melbourne
Background

- In a previous paper based on Australia, the argument was made that, for all births beyond the first birth, parity and interval since the last birth are much better predictors of the number and timing of future births than is age – particularly age on its own.

Rationale: Probabilities

• The patterning of births is such that parity is the principal determinant of whether or not a woman will have another birth and that time since the last birth is a good predictor of when she will have the next birth.
 – A 37-years-old women who had her first birth three years ago is much more likely to have the next birth than a 27 year-old woman who had her first birth 10 years ago.
Rationale: Population at risk

• McDonald and Kippen demonstrated in the Australian case that there was a high degree of stability across time in age-parity-time since last birth probabilities of birth for all births other than the first. The principal determinant of change then became the rate and timing of first births.

• Changes in the timing of first births produced changes in the relevant population at risk by age, parity and time since last birth and forecasting accuracy was greatly enhanced by taking the three-parameter population into consideration because it took into account previous changes in first births.
The centrality of the first birth

The Australian study concluded:

When fertility rates are low, the main factor that affects the **annual** incidence of births is changes in the rates of first birth by age across successive cohorts of women.
Data requirements: two large matrices

• 1. A matrix of probabilities of birth by single years of age (35), single parity (10) and single years since the time of the last birth (10) = 3500 cells (but a large number of the cells are zero or near zero).

• 2. An equivalent (3500 cell) matrix of the population at risk (but again a large number of the cells are zero or near zero).

• Deriving the database requires a very large survey or census, or accumulation from birth registration data.
Data inputs for Iran

1) 1986, 1996, 2006 Censuses

2) The 2000 Iran Demographic Health Survey (IDHS)
 - Households interviewed: 113,913
 - Ever married women 15-49: 90,240
 - Births occurred to women: 316,371

3) The 2010 Iran Multiple Indexes & Demographic Health Survey (IDHS)
 - Households interviewed: 31,350
 - Ever married women 15-54: 34,435
 - Births occurred to women: 62,189
Figure 18. Total Fertility Rate, Iran, 1980-2009

Data sources: The 2010 and 2000 Iran DHS and the 2006 and 2011 Censuses
Proportion Never Married by Age, Real Birth Cohorts

Age

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Age

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Probability of first birth by years since marriage for women’s age at marriage
Probability of having first birth by years since marriage for selected years in which the first birth occurred.
Probability of having second birth by years since first birth for selected years in which the second birth occurred
Probability of having third birth by years since second birth for selected years in which the third birth occurred
Third births

Years since previous parity: 0 1 2 3 4 5 6 7 8 9 10+

ASFR/1000

2000

2010

Years since previous parity: 0 1 2 3 4 5 6 7 8 9 10+
Number of registered births and forecasted births in the equivalent years between 2000 and 2010
Limitations

• Getting the data, especially the population at risk.

• Smoothing the data surface for random fluctuations where small numbers are involved.

• Handling the data. Difficult with Excel because of the size. Need to use matrix algebra and a computer program.

• Method for projecting probabilities of first birth.