Period and cohort fertility dynamics in the developed world. The first Human Fertility Database Symposium 3-4 November 2011, MPIDR, Germany

On the Possibilities of Predicting Cohort Fertility Measures from Period Fertility Measures: Theory and Empirical Evidence

P. C. Roger Cheng

Joshua R. Goldstein

What are period measures for?

Ni Bhrolchain, M (2011), Tempo and the TFR, *Demography* 48, p.841-861.

- To estimate the fertility of cohorts
- Evidence is mixed on the validity of tempo-adjusted measures as estimators of completed cohort parameters (p851).

What are period measures for?

Ni Bhrolchain, M (2011), Tempo and the TFR, *Demography* 48, p.841-861.

This paper

- establishes a formal relationship between period and cohort measures
- ✓ responds to the literature casting doubts on the usefulness of period measures as cohort estimators
- proposes three tempo-adjusted predictors of cohort quantum which are easy to implement
- examines the performance in predicting the CTFR

the cohort-period relationship

the cohort-period relationship

the cohort-period relationship

- Bongaarts and Feeney (1998, p.282-284)
 - proposed an aggregate test of their formula
 - compared the completed CTFR with a weighted average of BF values over childbearing years
- ✓ did not provide a formal inference and
- the weights proposed differ from ours

$$CTFR(c) = \int_{0}^{A} BF(c+a) w(a,c+a) da \qquad \text{observed} \\ + \int_{A}^{\beta} BF(c+A) w(a,c+a) da \qquad \text{unfinished}$$

Propositions

$$CTFR(c) = \int_{0}^{A} BF(c+a) \ w(a,c+a) \ da \qquad \text{observed} \\ + \int_{A}^{\beta} BF(c+a) \ w(a,c+a) \ da \qquad \text{unfinished}$$

Define the truncation percentile as

 $\alpha(A, c) = \int_0^A BF(c+a) w(a,c+a) da / CTFR(c)$ CTFR(c) = $\int_0^A f(a,c+a) da / \alpha(A, c)$ $\int_0^A w(a,c+a) da$

Proportion-Inflation

Empirical evaluation

Compare the performance in predicting the CTFR

- ✓ the Freeze-BF1
- ✓ the Freeze-BF2
- ✓ the Proportion-Inflation
- ✓ the Freeze-Rate
- ✓ the Linear-Extrapolation

Data are from the HFD and the Eurostat

- \checkmark Canada, the U.S., and 23 European countries
- 863 and 272 completed cohorts for all-birth-combined and parity-specific data

Empirical evaluation

- For each completed cohort, predict the CTFR based on partial information
- from age 15 through a chosen truncation age A (varying between 19 and 43)
- Classify results by truncation percentile:
 - ✓ [10,30)
 - ✓ [30,50)
 - ✓ [50,65) → mean age of childbearing
 ✓ [65,75)
 - ✓ [75,85)

Empirical evaluation

Adopt the prediction error index as:

PE = est. CTFR - true CTFR true CTFR - obs. CTFR * 100%

✓ positive: overshoot

negative: under-estimate

- ✓ For example:
 - true=2.0
 - obs.=0.8
 - est.=1.8

PE= - 16.67%

how much of the unfinished fertility has not been correctly estimated

- true=2.0
- obs.=1.2
- est.=1.8
 - PE= 25.00%

Results

Average Performance of Absolute Prediction Error very good 7.5% good 12.5% average 20.0% poor 37.5% very poor

birth order	Ν	Freeze-BF1	Freeze-BF2	Proportion Inflation F	Freeze-Rate	Linear Extrapolation	
truncation percentile $\in [10\%, 30\%)$							
all	$2,\!627$	13.57	13.46	13.32	17.40	18.66	
1	585	6.17	6.04	4.99	10.19	11.74	
2	700	9.31	9.15	7.82	11.91	15.94	
3+	829	27.35	27.36	31.20	27.62	27.22	
$truncation \ percentile \in [30\%, 50\%)$							
\mathbf{all}	$2,\!344$	13.98	13.71	14.05	17.28	16.79	
1	507	6.74	6.74	5.52	11.74	11.03	
2	581	10.28	10.38	8.69	13.70	15.71	
3+	664	23.53	23.69	29.90	23.38	TFR 22.62 BF	
		trunce	ation percent	$tile \in [50\%, 65]$	5%)	2875 203	2
all	1,909	14.35	14.05	15.40	17.44	$24.24^{16.41}$	7
1	436	7.79	7.65	6.49	12.74	24.34 _{11.07} 13.0	<u>/</u>
2	503	10.83	11.15	9.61	14.18	29.4 <u>3 14.62</u> 18.6	5
3+	530	22.09	22.20	31.48	21.64	29.04 ^{21.15} 29.8	8

Table 3: Average Performance by Method, Truncation Percentile, and Birth Order

Results

- Further examination across cohorts
- ✓ select Canada, Netherlands, Sweden, and the U.S.
- divide birth cohorts into three subgroups

cohorts 1910-30, 1935-50, 1951-65

Results

- Further examination across cohorts
- ✓ select Canada, Netherlands, Sweden, and the U.S.
- divide birth cohorts into three subgroups

cohorts 1910-30 cohorts 1935-50 cohorts 1951-65

Results: Box-whisker and [10%,30%)

all-birth-combined

first birth cohorts cohorts cohorta 1910-30 1935-50 % 1951-65 % % 100 100 100 50 50 50 0 0 -50 -50 -50 Щ Щ 3 **FB2** Щ FB3 à ā ā.

second birth

third birth and above

Conclusions

- The performance of CTFR estimators is mainly influenced by the quantum effect rather than the tempo effect.
- When the quantum effect is mild, our tempoadjusted methods perform very well, particularly at a very young truncation age.

As for cases when there exists a strong quantum effect, there may be no ideal method whose prediction of CTFR is statistically reliable.

Thanks for your time, comments welcome

