Period Paramount or Cohort Key? A cohort perspective on tempo adjustment

Joshua R. Goldstein* Thomas Cassidy[†]

*Max Planck Institute for Demographic Research, Rostock,
Germany

†Bucknell University, Lewisburg, PA.

3 November 2011 HFD Symposium

Agenda

- Period vs. Cohort Shifts
- ► A "Movie"
- Formal Models
- Applications and Potential Advantages of Cohort Model

Tale of Two Tempo Shifts

Our Cohort-shift model (Movie and Math)

Formal description of shifts

Period shifts à la Bongaarts and Feeney.

$$f(a,t) = f_0(a - R(t)) \cdot (1 - R'_t)$$

Formal description of shifts

Period shifts à la Bongaarts and Feeney.

$$f(a, t) = f_0(a - R(t)) \cdot (1 - R'_t)$$

Our cohort shift model

$$f(a,t) = f_0(a - S(t - a))$$

Formal description of shifts with period quantum

Period shifts à la Bongaarts and Feeney

$$f(a,t) = \phi_0(a - R(t)) \cdot (1 - R'(t)) \cdot q(t)$$

(BF is period-based for both tempo and quantum)

Formal description of shifts with period quantum

Period shifts à la Bongaarts and Feeney

$$f(a,t) = \phi_0(a - R(t)) \cdot (1 - R'(t)) \cdot q(t)$$

(BF is period-based for both tempo and quantum)

Our cohort-shift model

$$f(a,t) = \phi_0(a - S(t - a)) \cdot q(t)$$

(We are a hybrid: cohort tempo with period quantum)

Putting the cohort-shift model to use

- 1. Tempo-adjustment
- 2. Explain varying variance
- 3. Model fertility change statistically
- 4. See the future?

Counterfactual: The measures give period quantum in the absence of shifts.

Counterfactual: The measures give period quantum in the absence of shifts.

Period shifts case:

$$TFR^*(t) = \frac{1}{1 - R'(t)} \int f(a, t) da$$

Counterfactual: The measures give period quantum in the absence of shifts.

Period shifts case:

$$TFR^*(t) = \frac{1}{1 - R'(t)} \int f(a, t) da$$

Cohort shifts case:

$$\mathit{TFR}^\dagger(t) = \int f(a,t) igl[1 + S'(t-a) igr] \, da$$

Counterfactual: The measures give period quantum in the absence of shifts.

Period shifts case:

$$TFR^*(t) = \frac{1}{1 - R'(t)} \int f(a, t) da$$

Cohort shifts case:

$$\mathit{TFR}^\dagger(t) = \int f(a,t) igl[1 + S'(t-a) igr] \, da$$

Adjustment un-does the age compressions introduced by cohort shifts.

 TFR^{\dagger} gives less dramatic recent rise in fertility Does not rewrite story of babyboom

 TFR^{\dagger} has much smaller baby-boom and suggests no current tempo effect

 TFR^{\dagger} no current tempo effect

TFR[†] echoes Kohler and Philipov's variance-adjusted TFR

E.Germany (preliminary)

 TFR^{\dagger} suggests stability since c. 2000

Cohort shifts change period SD

Under linear cohort shifts, with constant quantum, period SD shrinks by same amount as TFR.

$$\mathsf{SD}_{\mathit{per}} = rac{\mathsf{SD}_{\mathit{coh}}}{1 + \mathit{S'}}$$

Cohort shifts change period SD

Under linear cohort shifts, with constant quantum, period SD shrinks by same amount as TFR.

$$\mathsf{SD}_{per} = rac{\mathsf{SD}_{coh}}{1 + S'}$$

In general case, we can fit cohort-shift model numerically, and calculate implied SD.

Explaining varying variance

Explaining varying variance, more

Goodness-of-Fit Comparisons

Past validation was with cohort TFR, but a more direct test is to look at f(a, t).

We have explicit formula for rates given parameters

$$\hat{f}^*(a,t) = \hat{f}_0^*(a - \hat{R}(t))(1 - \hat{R}'(t))\hat{q}^*(t)$$

$$\hat{f}^{\dagger}(a,t) = \hat{f}_0^{\dagger}(a - \hat{S}(t-a))\hat{q}^{\dagger}(t)$$

Can use computer optimization routines to find best f_0 , given other parameters, or all of the parameters at once.

Then compare goodness-of-fit (e.g sum-of-squared residuals)

$$SSR = \sum_{a,t} \left(\hat{f}(a,t) - f_{obs}(a,t) \right)^{2}$$

Goodness-of-Fit Results

Table: Residual Sum of Squares from Semi-optimized Fitting, Netherlands

	1970-2008		
	period	cohort	cohort resididuals period residuals
All parities, together	0.082	0.049	61%
$\sum_{a,t} \left(f - \hat{f} \right)^2$			
Parity 1	0.020	0.010	48%
Parity 2	0.010	0.008	82%
Parity 3+	0.004	0.001	37%

► Cohort model fits considerably better (smaller residuals)

"Postponement momentum"

Recall, under cohort shits,

$$f(a,t) = \phi_0(a - S(t-a)) \cdot q(t)$$

So,

$$TFR(t) = q(t) \int \phi_0(a - S(t - a)) da$$

Tomorrow's shifts will be very nearly today's.

Contrast with period shifts, we must forecast both period level and entire period shift.

Momentum of cohort shifts, example

Conclusions

- Theory. Cohort shifts offer an alternative behavioral theory of tempo: shifting life course with period surprises.
- Math. Offers nice mathematical results with clear interpretation
- Model fitting. Optimization offers a new way to compare models, validate adjustments
- Some evidence that cohort model can be superior
 - ► Tells a clearer story (e.g., less recent boom)
 - Can fit better
 - Explains changing variance
 - Can aid forecasts

Future Research

- Combining period and cohort shifts (big deal for Eastern Europe)
- ► Using TFR[†] as dependent variable for studying effects of economy, policy, etc.
- Studying postponement itself
- Considering other kinds of rates, by parity, hazards.

Thank you