Bayesian Forecasting of Cohort Fertility

Carl Schmertmann Emilio Zagheni Joshua Goldstein Mikko Myrskylä

Florida State Univ MPIDR MPIDR MPIDR *"It's difficult to make predictions... especially about the future."*

-- Yogi Berra??

-- Niels Bohr??

-- Winston Churchill??

Motivation: CFR Rebound?

- PTFR up recently in many countries...
- □ ... but CFR may be our real interest
- Change in period measures from...
 Increasing cohort levels? (CFR up)
 Decelerating postponement? (CFR ???)
 Both?

Objectives

Forecast completed CFR for cohorts already 15 but not yet 45

- Build a procedure that automatically includes uncertainty estimates
- Use historical data (HFD) to
 design model
 calibrate uncertainty

SOME HFD DATA...

CZE Lexis Surface

Our Strategy, inspired by Girosi & King (2008): Model the entire surface non-parametrically (i.e., one parameter per age-cohort cell)

Bayesian Model

P(θ | **Data**) $\underline{\alpha}$ L(**Data** | θ) · f(θ)

Posterior How likely are alternative surfaces θ, given our observations? **Likelihood** How likely are our observations for alternative surfaces θ?

Prior How likely are alternative surfaces θ , before we see data?

... informed by **HFD**

$P(\theta \mid Data, HFD) \alpha L(Data \mid \theta) \cdot f(\theta \mid HFD)$ Prior How common are alternative types of surfaces θ in the HFD? **Proper NORMAL** NORMAL **Improper NORMAL** with quadratic Posterior penalties in θ

Bayesian Forecast Results

(Closed-form) posterior mean vector and covariance matrix describe

- Best-guess fit to observations
- Best-guess forecasts
- Uncertainty

Means and variances of CFRs and ASFRs

PRIOR #1: How smooth is a time series likely to be at a given age? ... find out from HFD

PRIOR #2: What are typical shapes of cohort schedules? ... find out from HFD

COMBINED PRIORS: What are likely/unlikely Lexis surfaces? **f(θ | HFD)**

Using the HFD to build/calibrate

□ Define squared-error penalties for each prior (high penalty → low prior prob.)

Calibrate penalty weights to HFD data

→ "time series as wiggly as in HFD"
→ "cohort shapes regular as in HFD"

PRIOR #1: Time Series are locally linear

$$w_a \epsilon'_a \epsilon_a = w_a \phi'_a (I-S)' (I-S) \phi_a \qquad a = 1...A$$

PRIOR #1: Time Series are locally linear

Calibrate prior so that $E_f[RMSE(\theta)] = avg RMSE(\theta)$ in HFD

PRIOR #2: Cohort schedules are well approx. by SVD components from **HFD**

PRIOR #2: Cohort schedules are well approx. by SVD components from **HFD**

Calibrate prior so that $E_f[RMSE(\theta)] = avg RMSE(\theta)$ in HFD

Maximum a posteriori surface (+ *sd and covariances of cell estimates*)

CZE

LESSONS LEARNED

- Incorporating qualitative information about Lexis surfaces into a forecast is feasible
- HFD data are valuable for building priors that describe qualitative features of fertility surfaces (smoothness, shapes, etc.)
- Uncertainty estimates still need work
- Cohort CFR seems likely to rise, at least a little, in many low-fertility countries

Coming soon...

- Forecasts for other countries (esp. Southern Europe)
- Evaluate uncertainty estimates: Simulate "forecasts" made in 1985, 1990,... and compare to later observations
- Experiments with (much more flexible but much slower) MCMC estimation methods

Vielen Dank!

Extra stuff...

AUT

CAN

CHE

COHORT YEAR OF BIRTH

DEUTE

COHORT YEAR OF BIRTH

DEUTW

COHORT YEAR OF BIRTH

EST

FIN

FRA

GBRTENW

COHORT YEAR OF BIRTH

GBR_SCO

COHORT YEAR OF BIRTH

HUN

COHORT YEAR OF BIRTH

NLD

COHORT YEAR OF BIRTH

RUS

SVK

SWE

COHORT YEAR OF BIRTH

USA

Period TFR 1980-2008 Canada and Czech Rep

Year

Freeze Rate Surface

CZE Lexis Surface

CZE Lexis Surface

Forecast Methods

Model/Extrapolate cohort schedules

Li & Zheng (2003)
 SVD decomposition of complete cohort data
 Cohort schedules modeled as

 f_{coh} = (mean vec) + k_{coh} * (1st princ. comp.)

 Estimate each k_{coh} from partial cohort history

Myrskylä & Goldstein (2010)
 Parametric models for cohort schedules

Forecast Methods

ADVANTAGES for CFR estimation:

Freeze RateAvoids "nonsensical" forecastsFreeze SlopeUtilizes recent trendsCohort ModelFocuses on correct dimension

DISADVANTAGES for CFR estimation:

Freeze RateIgnores recent trendsFreeze SlopePossible "nonsensical" forecastsCohort ModelTreats cohorts as independent
(does not 'borrow strength'
across demographic dimensions)