

Childlessness and fertility by couples' educational gender (in)equality in Austria, Bulgaria and France

Beata Osiewalska

beata.osiewalska@uek.krakow.pl

June 2016

Education and fertility - background

- Education is **usually negatively related to fertility among women** (however the positive or U-shaped effects were also identified)
- Among men, the correlation between fertility and education is often **positive** or **U-shaped**
- How do these contradictory effects result in a couple?

• Heterogamy in education should encourage fertility due to partners' specialisation

- Heterogamy in education should encourage fertility due to partners' specialisation
- However, cultural and social factors as well as economic wellbeing might lead to the rejection of specialisation

- Heterogamy in education should encourage fertility due to partners' specialisation
- However, cultural and social factors as well as economic wellbeing might lead to the rejection of specialisation
- In the dual-earner family model both partners have to specialise in work and both should also specialise in family tasks

- Heterogamy in education should encourage fertility due to partners' specialisation
- However, cultural and social factors as well as economic wellbeing might lead to the rejection of specialisation
- In the dual-earner family model both partners have to specialise in work and both should also specialise in family tasks
- However, gender equality present in the labour market is not always accompanied by the equality in family institution

- Heterogamy in education should encourage fertility due to partners' specialisation
- However, cultural and social factors as well as economic wellbeing might lead to the rejection of specialisation
- In the dual-earner family model both partners have to specialise in work and both should also specialise in family tasks
- However, gender equality present in the labour market is not always accompanied by the equality in family institution
- Thus, the impact of various partners' educational profiles on their fertility might differ by country specific conditions

Country background

1. AUSTRIA

- Average level of gender equality regarding domestic work
- Inefficient childcare not enough facilities for young children, inadequate schooling hours (early ending) and poor afternoon supervision for older kids; low participation in childcare (one child out of five 0-2 year-old children)

Country background

1. AUSTRIA

- Average level of gender equality regarding domestic work
- Inefficient childcare not enough facilities for young children, inadequate schooling hours (early ending) and poor afternoon supervision for older kids; low participation in childcare (one child out of five 0-2 year-old children)

2. BULGARIA

- Men are reluctant to be involved in domestic work
- Inefficient childcare not enough facilities, very low participation rate (12% among 0-2 year-old children)

Country background

1. AUSTRIA

- Average level of gender equality regarding domestic work
- Inefficient childcare not enough facilities for young children, inadequate schooling hours (early ending) and poor afternoon supervision for older kids; low participation in childcare (one child out of five 0-2 year-old children)

2. BULGARIA

- Men are reluctant to be involved in domestic work
- Inefficient childcare not enough facilities, very low participation rate (12% among 0-2 year-old children)

3. FRANCE

- Similar level of gender equality to Austria (average)
- Adjusted childcare high public expenditures on childcare, high childcare participation rate (50% of 0-2 year-old children)

Couple educational profile

- **HOMOGAMY** female and male educational levels are equal (F=M)
- **HYPERGAMY** educational level of a male partner is higher than the educational level of a female partner (F<M)
- **HYPOGAMY** educational level of a male partner is lower than the educational level of a female partner (F>M)

• The negative influence of **couples' overall educational status** on their fertility in Austria and Bulgaria (opportunity cost for both a woman and a man in a couple)

- The negative influence of **couples' overall educational status** on their fertility in Austria and Bulgaria (opportunity cost for both a woman and a man in a couple)
- In France we expect a rather small variation in fertility due to couples' educational status, but we anticipate the occurrence of the postponement effect among highly educated individuals, especially regarding entry into parenthood

- The negative influence of **couples' overall educational status** on their fertility in Austria and Bulgaria (opportunity cost for both a woman and a man in a couple)
- In France we expect a rather small variation in fertility due to couples' educational status, but we anticipate the occurrence of the postponement effect among highly educated individuals, especially regarding entry into parenthood
- Higher probability of childlessness and lower average fertility of **hypogamous unions** in Bulgaria (poor childcare and low gender equality increases the opportunity cost, especially for a couple in which a woman is the primary-earner)

- The negative influence of **couples' overall educational status** on their fertility in Austria and Bulgaria (opportunity cost for both a woman and a man in a couple)
- In France we expect a rather small variation in fertility due to couples' educational status, but we anticipate the occurrence of the postponement effect among highly educated individuals, especially regarding entry into parenthood
- Higher probability of childlessness and lower average fertility of **hypogamous unions** in Bulgaria (poor childcare and low gender equality increases the opportunity cost, especially for a couple in which a woman is the primary-earner)
- **Hypergamy** enhances couples' fertility, mainly in Austria and Bulgaria (traditional family institutions, lower female opportunity cost)

Data

- GGS 1st wave data for: Austria, Bulgaria and France
- <u>Sample</u>: only couples with the female partner aged **24-45** (2370 couples in Austria, 2922 in Bulgaria and 2147 in France)

Data

- GGS 1st wave data for: Austria, Bulgaria and France
- <u>Sample</u>: only couples with the female partner aged **24-45** (2370 couples in Austria, 2922 in Bulgaria and 2147 in France)
- Data on individual **education** given in ISCED codes (0-6), grouped for a couple into 5 classes:
 - edu11 both partners have at most low education (from 0 up to 2 ISCED codes);
 - edu22 both partners have a medium educational level (3 and 4 ISCED codes; reference level);
 - edu33 both partners have completed a high level of education (5 and 6 ISCED codes);
 - eduLH hypergamous union (including the following cases of woman's-man's education: low-medium, low-high, mediumhigh);
 - eduHL hypogamous union (included cases: medium-low, high-low, high-medium).

Structure of couples' educational status

	AT	BG	FR
Homogamous:	65.6%	73.0%	55.1%
edu11	3.8%	11.5%	10.5%
edu22	51.1%	47.6%	18.8%
edu33	10.7%	13.9%	25.9%
Hypergamous (eduLH)	23.1%	8.5%	21.3%
Hypogamous (eduHL)	11.4%	18.4%	23.5%

Structure of couples' educational status

	AT	BG	FR
Homogamous:	65.6%	73.0%	55.1%
edu11	3.8%	11.5%	10.5%
edu22	51.1%	47.6%	18.8%
edu33	10.7%	13.9%	25.9%
Hypergamous (eduLH)	23.1%	8.5%	21.3%
Hypogamous (eduHL)	11.4%	18.4%	23.5%

Structure of couples' educational status

	AT	BG	FR
Homogamous:	65.6%	73.0%	55.1%
edu11	3.8%	11.5%	10.5%
edu22	51.1%	47.6%	18.8%
edu33	10.7%	13.9%	25.9%
Hypergamous (eduLH)	23.1%	8.5%	21.3%
Hypogamous (eduHL)	11.4%	18.4%	23.5%

Hurdle Zero-Truncated Poisson Model with Bayesian approach

$$P(Y_i = y_i | \beta, \gamma) = \begin{cases} p_i, & y_i = 0\\ \frac{1 - p_i}{1 - \exp(-\lambda_i)} \frac{\lambda_i^k \exp(-\lambda_i)}{k!}, y_i = 1, 2, \dots \end{cases}$$
$$p_i = \frac{\exp(x_i \beta)}{1 + \exp(x_i \beta)}; \quad \lambda_i = \exp(w_i \gamma)$$

 x_i, w_i – vectors of covariates; β, γ – vectors of hyperparameters

Hurdle Zero-Truncated Poisson Model with Bayesian approach

$$P(Y_i = y_i | \beta, \gamma) = \begin{cases} p_i, & y_i = 0\\ \frac{1 - p_i}{1 - \exp(-\lambda_i)} \frac{\lambda_i^k \exp(-\lambda_i)}{k!}, y_i = 1, 2, ...\\ p_i = \frac{\exp(x_i\beta)}{1 + \exp(x_i\beta)}; & \lambda_i = \exp(w_i\gamma)\\ x_i, w_i - \text{vectors of covariates; } \beta, \gamma - \text{vectors of hyperparameters} \end{cases}$$

Advantages:

- An adequate approach to fertility: to become parents a "hurdle" (measured by the probability of childlessness) must be crossed first
- Possibility to include different sets of determinants in modelling zero and counts

- **Response variable**: number of couples' children ever born
- Main explanatory variables: partners' educational status
- Control covariates:
 - a) <u>socioeconomic characteristic of a household</u>: household monthly income, number of hours worked per week by a woman, number of rooms in the flat/house, a woman is a housewife
 - b) <u>other couples' characteristics</u>: marital status, age of a woman and a man, type of settlement
 - c) <u>only for parents:</u> institutional help with childcare

		СНІІ	CHILDLESSNESS (p)			RENTHOOD	(λ)
		Austria	Bulgaria	France	Austria	Bulgaria	France
	edu11	-0.584	-1.373	0.411	0.405	0.459	0.091
Education	edu33	0.817	0.550	0.955	-0.170	-0.156	-0.170
of a couple	eduLH	0.074	-0.387	0.051	0.052	0.061	-0.025
	eduHL	0.960	0.425	0.388	-0.006	-0.177	-0.061
Household	low	-0.288	-0.762	0.038	-0.102	0.146	0.071
income	high	0.704	-0.038	0.401	-0.054	-0.037	0.011
Famala	none	-2.639	-1.019	-0.105	0.181	0.093	0.024
Female working hours	20-	-1.797	0.385	-0.623	0.076	-0.077	0.098
working nours	41+	0.747	0.027	0.267	0.095	0.007	-0.049
Number of roor	ns	-0.384	-0.055	-0.670	0.067	0.034	0.118
Housewife		0.467	-0.459	-2.024	0.205	0.052	0.296

- 1. Insignificant variables have been marked with grey.
- 2. Positive values in *childlessness* (*p*) means a higher probability of childlessness.
- 3. Positive values in *parenthood* (λ) means a higher average no. of kids among parents.
- 4. Model includes also control covariates.

		CHILDLESSNESS (p)			PARENTHOOD (λ)		
		Austria	Bulgaria	France	Austria	Bulgaria	France
	edu11	-0.584	-1.373	0.411	0.405	0.459	0.091
Education of a couple	edu33	0.817	0.550	0.955	-0.170	-0.156	-0.170
	eduLH	0.074	-0.387	0.05	0.052	0.061	-0.025
	eduHL	0.960	0.425	0.388		-0.177	-0.061
Household	low	-0.288	-0.762	0.038	Couple edu	icational st	atus
income	high	0.704	-0.038	0.401	has in gene	eral negativ	e
Fomalo	none	-2.639	-1.019	-0.105			
vorking hours	20-	-1.797	0.385	-0.623	0.076	-0.077	0.098
working hours	41+	0.747	0.027	0.267	0.095	0.007	-0.049
Number of roor	ns	-0.384	-0.055	-0.670	0.067	0.034	0.118
Housewife		0.467	-0.459	-2.024	0.205	0.052	0.296

- 1. Insignificant variables have been marked with grey.
- 2. Positive values in *childlessness* (*p*) means a higher probability of childlessness.
- 3. Positive values in *parenthood* (λ) means a higher average no. of kids among parents.
- 4. Model includes also control covariates.

		CHII	CHILDLESSNESS (p)			RENTHOOD	(λ)
		Austria	Bulgaria	France	Austria	Bulgaria	France
	edu11	-0.584	-1.373	0.411	0.405	0.459	0.091
Education of a couple	edu33	0.817	0.550	0.955	-0.170	-0.156	-0.170
	eduLH	0.074	-0.387	0.0	0.052	0.061	-0.025
	eduHL	0.960	0.425	0.388		-0.177	-0.061
Household	low	-0.288	-0.762	0.038			
income	high	0.704	-0.038	0.40 Fe	ertility of h	nypergamou for from	s union
Famala	none	-2.639	-1.019	-0.10 ho	omogamou	s medium e	ducated
Female working hours	20-	-1.797	0.385	-0.62 pa	artners		
working hours	41+	0.747	0.027	0.267	0.095	0.007	-0.049
Number of roor	ns	-0.384	-0.055	-0.670	0.067	0.034	0.118
Housewife	0.467	-0.459	-2.024	0.205	0.052	0.296	

- 1. Insignificant variables have been marked with grey.
- 2. Positive values in *childlessness* (*p*) means a higher probability of childlessness.
- 3. Positive values in *parenthood* (λ) means a higher average no. of kids among parents.
- 4. Model includes also control covariates.

		CHII	CHILDLESSNESS (p)			PARENTHOOD (λ)		
		Austria	Bulgaria	France	Austria	Bulgaria	France	
	edu11	-0.584	-1.373	0.411	0.405	0.459	0.091	
Education of a couple	edu33	0.817	0.550	0.955	-0.170	-0.156	-0.170	
	eduLH	0.074	-0.387	0.051	0.052	0.061	-0.025	
	eduHL	0.960	0.425	0.388	-0.006	-0.177	-0.061	
Household	low	-0.288	-0.762	0.03	-0.102	0.146	0.071	
income	high	0.704	-0.038	9	0.054	-0.037	0.011	
Fomalo	none	-2.639	-1.0 Hy	pogamy inc	reases the	probability	v of	
working hours	20-	-1.797	0.3 ch	ildlessness	in Austria a	and decreas	ses 🛛	
working nours	41+	0.747	0.0 the	e average n	umber of a	children am	ong	
Number of rooms		-0.384	-0.0 pa	rents in but	garia			
Housewife	0.467	-0.459	-2.024	0.205	0.052	0.296		

- 1. Insignificant variables have been marked with grey.
- 2. Positive values in *childlessness* (*p*) means a higher probability of childlessness.
- 3. Positive values in *parenthood* (λ) means a higher average no. of kids among parents.
- 4. Model includes also control covariates.

Fertility by couples' educational profile

The comparison of:

- the posterior **probability of childlessness**
- the average **number of children ever born**

by various couples' educational status and country

Covariate	Probab	ility of childl	essness	Average number of children			
	Austria	Bulgaria	France	Austria	Bulgaria	France	
edu11	0.211	0.022	0.156	1.542	1.656	1.535	
edu22 (reference)	0.308	0.071	0.108	1.103	1.311	1.548	
edu33	0.499	0.118	0.235	0.747	1.188	1.228	
eduLH	0.324	0.054	0.113	1.102	1.365	1.520	
eduHL	0.534	0.105	0.150	0.741	1.199	1.432	

	Probab	ility of childl	essness	Average number of children			
Covariate	Austria	Bulgaria	France	Austria	Bulgaria	France	
edu11	0.211	0.022	0.156	1.542	1.656	1.535	
edu22 (reference)	0.308	0.071	0.108	1.103	1.311	1.548	
edu33	0.499	0.118	0.235	0.747	1.188	1.228	
eduLH	0.324	0.054	0.113	1.102	1.365	1.520	
eduHL	0.534	0.105	0.150	0.741	1.199	1.432	

Covariate	Probab	ility of childl	essness	Average number of children		
Covariate	Austria	Bulgaria	France	Austria	Bulgaria	France
edu11	0.211	0.022	0.156	1.542	1.656	1.535
edu22 (reference)	0.308	0.071	0.108	1.103	1.311	1.548
edu33	0.499	0.118	0.235	0.747	1.188	1.228
eduLH	0.324	0.054	0.113	1.102	1.365	1.520
eduHL	0.534	0.105	0.150	0.741	1.199	1.432

	Probab	ility of child	lessness	Average number of children			
Covariate	Austria	Bulgaria	France	Austria	Bulgaria	France	
edu11	0.211	0.022	0.156	1.542	1.656	1.535	
edu22 (reference)	0.308	0.071	0.108	1.103	1.311	1.548	
edu33	0.499	0.118	0.235	0.747	1.188	1.228	
eduLH	0.324	0.054	0.113	1.102	1.365	1.520	
eduHL	0.534	0.105	0.150	0.741	1.199	1.432	

Covariate	Probab	ility of childl	essness	Average number of children			
Covariate	Austria	Bulgaria	France	Austria	Bulgaria	France	
edu11	0.211	0.022	0.156	1.542	1.656	1.535	
edu22 (reference)	0.308	0.071	0.108	1.103	1.311	1.548	
edu33	0.499	0.118	0.235	0.747	1.188	1.228	
eduLH	0.324	0.054	0.113	1.102	1.365	1.520	
eduHL	0.534	0.105	0.150	0.741	1.199	1.432	

Covariate	Probability of childlessness			Average number of children		
	Austria	Bulgaria	France	Austria	Bulgaria	France
edu11	0.211	0.022	0.156	1.542	1.656	1.535
edu22 (reference)	0.308	0.071	0.108	1.103	1.311	1.548
edu33	0.499	0.118	0.235	0.747	1.188	1.228
eduLH	0.324	0.054	0.113	1.102	1.365	1.520
eduHL	0.534	0.105	0.150	0.741	1.199	1.432

Covariate	Probability of childlessness			Average number of children		
	Austria	Bulgaria	France	Austria	Bulgaria	France
edu11	0.211	0.022	0.156	1.542	1.656	1.535
edu22 (reference)	0.308	0.071	0.108	1.103	1.311	1.548
edu33	0.499	0.118	0.235	0.747	1.188	1.228
eduLH	0.324	0.054	0.113	1.102	1.365	1.520
eduHL	0.534	0.105	0.150	0.741	1.199	1.432

Covariate	Probability of childlessness			Average number of children		
	Austria	Bulgaria	France	Austria	Bulgaria	France
edu11	0.211	0.022	0.156	1.542	1.656	1.535
edu22 (reference)	0.308	0.071	0.108	1.103	1.311	1.548
edu33	0.499	0.118	0.235	0.747	1.188	1.228
eduLH	0.324	0.054	0.113	1.102	1.365	1.520
eduHL	0.534	0.105	0.150	0.741	1.199	1.432

• Negative influence of **couples' educational level** on fertility:

- Negative influence of **couples' educational level** on fertility:
- highly educated unions have a higher probability of being childless and a lower number of children ever born than their medium and low educated counterparts (might be connected with the postponement effect)

- Negative influence of **couples' educational level** on fertility:
- highly educated unions have a higher probability of being childless and a lower number of children ever born than their medium and low educated counterparts (might be connected with the postponement effect)
- homogamy in low education enhances the first childbearing in Bulgaria and increases the average number of children among parents in Bulgaria and Austria (the quantum effect)

- Negative influence of **couples' educational level** on fertility:
- highly educated unions have a higher probability of being childless and a lower number of children ever born than their medium and low educated counterparts (might be connected with the postponement effect)
- homogamy in low education enhances the first childbearing in Bulgaria and increases the average number of children among parents in Bulgaria and Austria (the quantum effect)
- **Hypogamy** in education has rather a negative impact on fertility:

- Negative influence of **couples' educational level** on fertility:
- highly educated unions have a higher probability of being childless and a lower number of children ever born than their medium and low educated counterparts (might be connected with the postponement effect)
- homogamy in low education enhances the first childbearing in Bulgaria and increases the average number of children among parents in Bulgaria and Austria (the quantum effect)
- **Hypogamy** in education has rather a negative impact on fertility:
- visible especially in Austria and Bulgaria

- Negative influence of **couples' educational level** on fertility:
- highly educated unions have a higher probability of being childless and a lower number of children ever born than their medium and low educated counterparts (might be connected with the postponement effect)
- homogamy in low education enhances the first childbearing in Bulgaria and increases the average number of children among parents in Bulgaria and Austria (the quantum effect)
- **Hypogamy** in education has rather a negative impact on fertility:
- visible especially in Austria and Bulgaria
- these effects are mainly induced by unions of highly educated women and medium educated men

- Negative influence of **couples' educational level** on fertility:
- highly educated unions have a higher probability of being childless and a lower number of children ever born than their medium and low educated counterparts (might be connected with the postponement effect)
- homogamy in low education enhances the first childbearing in Bulgaria and increases the average number of children among parents in Bulgaria and Austria (the quantum effect)
- **Hypogamy** in education has rather a negative impact on fertility:
- visible especially in Austria and Bulgaria
- these effects are mainly induced by unions of highly educated women and medium educated men
- Fertility of **hypergamous** couples in general does not significantly differ from their homogamous medium educated counterparts

- Negative influence of **couples' educational level** on fertility:
- highly educated unions have a higher probability of being childless and a lower number of children ever born than their medium and low educated counterparts (might be connected with the postponement effect)
- homogamy in low education enhances the first childbearing in Bulgaria and increases the average number of children among parents in Bulgaria and Austria (the quantum effect)
- **Hypogamy** in education has rather a negative impact on fertility:
- visible especially in Austria and Bulgaria
- these effects are mainly induced by unions of highly educated women and medium educated men
- Fertility of **hypergamous** couples in general does not significantly differ from their homogamous medium educated counterparts
- Much **lower variation** in the reproductive behaviour by couples' educational profiles is observed in **France** a high level of gender equality accompanied by an adequate childcare system might help couples to overcome possible obstacles and enhance fertility at all educational levels

THANK YOU FOR YOUR ATTENTION!

Beata Osiewalska

beata.osiewalska@uek.krakow.pl

December 2015

Posterior distributions of the probability of childlessness

probability p

Posterior distributions of the expected number of children

