Four mathematical models of fertility change

Joshua R. Goldstein Department of Demography UC Berkeley

Thomas B. Cassidy Department of Mathematics Bucknell University

Based our chapter in forthcoming Springer volume, Dynamic Demographic Analysis (edited by Robert Schoen)

Kinds of explanation

• Cause and effect

(identification revolution in economics)

- Understanding how people think (cognition, behavior, culture)
- Formal modeling

(mathematics, often simple, to understand dynamics and properties of processes)

In Ron Lee's words

Formal demography is nothing more than clear analytic thinking about a demographic problem, with hard-edged concepts, typically distilled into mathematical expressions.

Four models

1. Ryder's linear model

(approximating polynomial change of age-specific fertility)

- Lee's "moving target" model (changing fertility goals from period to period)
- Bongaarts and Feeney's period-shift model (births being postponed from one period to the next)
- 4. Our own cohort-shift model

(each cohort having its own shifted age-schedule)

Ryder's approach

Approximates a polynomial up to linear term f(a,t) = f(a,0) + f'(a,0) t + ...

Result: period-cohort translation formula

Cohort TFR(c) ~ Period TFR(c + μ_c) / (1 - μ_c ')

Lee's approach

- Fertility target D(t) changes from year to year
- Fertility in each year is a flow of the difference between desired fertility in period and cumulative fertility to date
- Gives us

 $f(a,t) = \lambda [D(t) - C(a,t)]$

- Results:
 - Tells how fertility will change targets change
 - Allows estimation of targets implicit in current rates

Bongaarts-Feeney, period shifts

Fertility the product of period quantum and period shifts in baseline fertility

 $f(a,t) = q(t) f_0(a - R(t)) (1-R'(t))$

Note period quantum q(t), and period shifts R'(t)

Result: tempo-adjusted fertility

 $TFR^{*}(t) = TFR(t) / (1 - R'(t)) = TFR(t) / (1 - \mu'(t))$

Goldstein-Cassidy, cohort shifts

Cohort shifts with period quantum f(a,t) = q(t) fO(a - S(t-a))

Result: A tempo adjusted fertility that accounts for cohort shifts

TFR-dagger(t) = $\int f(a,t) [1 + S'(t-a)] da$

Application to HFD

- Compare models (argue which is "best")
- Allow each model to tell a different story

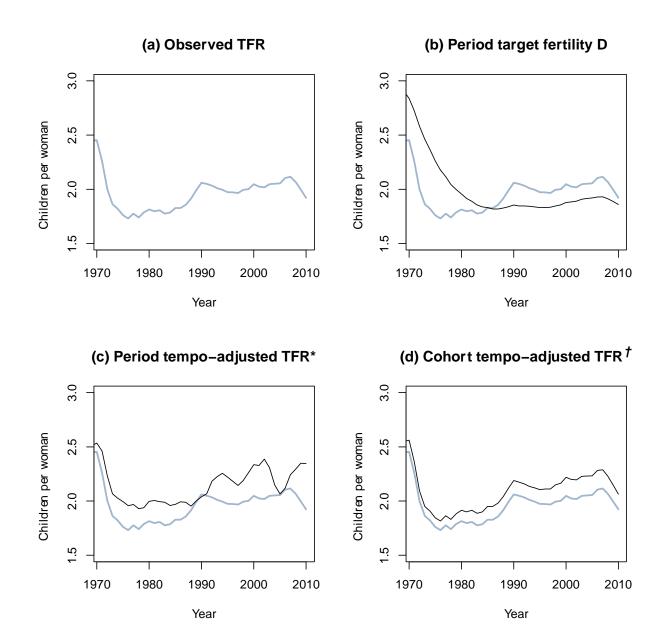
Using HFD data for goodness-of-fit

Table 1 Goodness-of-fit comparisons over two time intervals in Holland, with the smaller sum of squarederrors (SSE) of fertility rates indicating a closer fit between the model and the observed data

	Holland 1960–2008		Holland 1975–2008	
	Period Fit SSE	Cohort Fit SSE	Period Fit SSE	Cohort Fit SSE
All Parities	0.231	0.078	0.039	0.021
Parity 1	0.029	0.038	0.013	0.008
Parity 2	0.014	0.018	0.007	0.005
Parity 3 +	0.009	0.003	0.001	0.001
All Parities, Fit Separately	0.097	0.093	0.038	0.020

Source: Goldstein and Cassidy (2014)

4 stories of U.S. fertility



Goldstein & Cassidy, forthcoming

Conclusions

- Value of model is not so much its fit
- But rather to give us a new way of thinking about fertility change
- Hope that HFD will be an important resource for creating new modeling approaches, new ways of gaining understanding